Human Action Recognition Using Improved Salient Dense Trajectories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Action Recognition Using Improved Salient Dense Trajectories

Human action recognition in videos is a topic of active research in computer vision. Dense trajectory (DT) features were shown to be efficient for representing videos in state-of-the-art approaches. In this paper, we present a more effective approach of video representation using improved salient dense trajectories: first, detecting the motion salient region and extracting the dense trajectorie...

متن کامل

Hybrid Super Vector with Improved Dense Trajectories for Action Recognition

With recent improved dense trajectory features (HOG, warped HOF, and warped MBH), we employ two advanced super vector methods, namely Fisher Vector (FV) and soft Vector of Locally Aggregated Descriptors (VLAD-K) to encode them separately. The two individual super vectors are concatenated into a Hybrid Super Vector, and a linear SVM classifier is used to predict labels. We achieve 87.46%1 in ave...

متن کامل

Vision-based action recognition of construction workers using dense trajectories

Wide spread monitoring cameras on construction sites provide large amount of information for construction management. The emerging of computer vision and machine learning technologies enables automated recognition of construction activities from videos. As the executors of construction, the activities of construction workers have strong impact on productivity and progress. Compared to machine w...

متن کامل

Learning features from Improved Dense Trajectories using deep convolutional networks for Human Activity Recognition

In this work, we tackle the problem of recognizing human activities by exploring methods for incorporating the state of the art improved dense trajectories into a deep learning framework. Specifically, we explore efficacy of several models trained using the action tubes sampled from dense trajectory. We performed experiments two different architectures, the first one that resembles bag of words...

متن کامل

Action Detection with Improved Dense Trajectories and Sliding Window

In this paper we describe an action/interaction detection system based on improved dense trajectories [20], multiple visual descriptors and bag-of-features representation. Given that the actions/interactions are not mutual exclusive, we train a binary classifier for every predefined action/interaction. We rely on a non-overlapped temporal sliding window to enable the temporal localization. We h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Intelligence and Neuroscience

سال: 2016

ISSN: 1687-5265,1687-5273

DOI: 10.1155/2016/6750459